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The new method of the top-quark mass measurement is similar to one suggested previously [16, 17] for t�t dilepton
decay channels (where both W bosons decay leptonically), and used in previous mass analyses of dilepton events [3],
and akin to an approach suggested for the measurement of the mass of the W boson at LEP [18, 19, 20]. The critical
di�erences from previous analyses in the lepton + jets decay channel lie in: (i) the assignment of more weight to
events that are well measured or more likely to correspond to t�t signal, and (ii) the handling of the combinations of
�nal-state objects (lepton, jets, and imbalance in transverse momentum, the latter being a signature for an undetected
neutrino) and their identi�cation with top-quark decay products in an event (e.g., from ambiguity in choosing jets
that correspond to b or �b quarks from the decays of the t and �t quarks). Also, since leading-order matrix elements
were used to calculate the event weights, only events with exactly four jets are kept in this analysis, resulting in a
candidate sample of 71 events. Although we are left with fewer events, the new method for extracting the mass of
the top quark provides substantial improvement in both statistical and systematic uncertainties.
We calculate as a function of top mass the di�erential probability that the measured variables in any event corre-

spond to signal. The maximum in the product of these individual event probabilities provides the best estimate of the
mass of the top quark in the data sample. The impact of biases from imperfections in the detector and event recon-
struction algorithms is taken into account in two ways. Geometric acceptance, trigger eÆciencies, event selection, etc.,
enter through a multiplicative acceptance function that is independent of Mt. Because the angular directions of all
the objects in the event, as well as the electron momentum, are measured with high precision, their measured values
are used directly in the calculation of the probability that any event corresponds to t�t or background production. The
known momentum resolution is used to account for uncertainties in measurements of jet energies and muon momenta.
As in the previous analysis [13], momentum conservation in 
+jet events is used to check that the energies of jets

in the experiment agree with Monte Carlo (MC) simulation. This calibration has an uncertainty ÆE = (0:025E+ 0:5
GeV). Consequently, all jet energies in our sample are rescaled by �ÆE, the analysis redone, and half of the di�erence
in the two rescaled results for Mt (ÆMt = 3:3 GeV/c2) is taken as a systematic uncertainty from this source. All
other contributions to systematic uncertainty: Monte Carlo modeling of signal (ÆMt = 1:1 GeV/c2) and background
(ÆMt = 1:0 GeV/c2), e�ect of calorimeter noise and event pile-up (ÆMt = 1:3 GeV/c2), and other corrections from
top-quark mass extraction (ÆMt = 0:6 GeV/c2) are much smaller, and discussed in detail in Refs. [21, 22]. It should be
noted that the new mass measurement method provides a signi�cant (� 40%, from �5:5 to �3:9 GeV/c2) reduction
in systematic uncertainty, which is ultimately dominated by the measurement of jet energies. For details on the new
analysis, see the Methods section.
The �nal result is Mt = 180:1� 3:6 (stat) � 3:9 (syst) GeV/c2. The improvement in statistical uncertainty over

our previous measurement is equivalent to collecting a factor of 2.4 as much data. Combining the statistical and
systematic uncertainties in quadrature, we obtain Mt = 180:1� 5:3 GeV/c2, which is consistent with our previous
measurement in the same channel (at � 1:4 standard deviations), and has a precision comparable to all previous
top-quark mass measurements combined [1].
The new measurement can be combined with that obtained for the dilepton sample that was also collected at D�

during Run I [3] (Mt = 168:4� 12:3 (stat)� 3:6 (syst) GeV/c2), to yield the new D� average for the mass of the top
quark:

Mt = 179:0� 5:1 GeV/c2 (D�): (1)

Combining this with measurements from the CDF experiment [2], provides a new \world average" (based on all
measurements available) for the top-quark mass [4]:

Mt = 178:0� 4:3 GeV/c2 (All available data); (2)

dominated by our new measurement. This new world average shifts the best-�t value of the expected Higgs mass from
96 GeV/c2 to 117 GeV/c2 (see Figure 3), which is now outside of the experimentally-excluded region, yet accessible in
the current run of the Tevatron and at future runs at the Large Hadron Collider (LHC), currently under construction
at CERN. (The upper limit on the Higgs mass at 95% con�dence level changes from 219 GeV/c2 to 251 GeV/c2.)
Figure 3 shows the e�ect of using only the new D� top mass for �ts to the Higgs mass, and indicates a best value of
123 GeV/c2 and the upper limit of 277 GeV/c2 at 95% con�dence level. It should be noted that the horizontal scale
in Figure 3 is logarithmic, and the limits on the Higgs boson mass are therefore asymmetric.
The new method is already being applied to data being collected by the CDF and D� experiments at the new

run of the Fermilab Tevatron and should provide even higher precision on the determination of the top-quark mass,
equivalent to more than a doubling of the data sample, relative to using the conventional method. An ultimate
precision of at � 2 GeV/c2 on the top-quark mass is expected to be reached in several years of Tevatron operation.
Further improvement may eventually come from the LHC.
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Methods

The probability density as a function of Mt can be written as a convolution of the calculable cross section and any
e�ects from measurement resolution:

P (x;Mt) =
1

�(Mt)

Z
d�(y;Mt)dq1dq2f(q1)f(q2)W (y; x) (3)

where W (y; x), our general transfer function, is the normalized probability for the measured set of variables x to arise
from a set of nascent (partonic) variables y, d�(y;Mt) is the partonic theoretical di�erential cross section, f(q) are
parton distribution functions that re
ect the probability of �nding any speci�c interacting quark (antiquark) with
momentum q within the proton (antiproton), and �(Mt) is the total cross section for producing tt. The integral in
Eq. (3) sums over all possible parton states leading to what is observed in the detector.
The acceptance of the detector is given in terms of a function A(x) that relates the probability Pm(x;Mt) of

measuring the observed variables x to their production probability P (x;Mt): Pm(x;Mt) = A(x)P (x;Mt). E�ects
from energy resolution, etc., are taken into account in the transfer function W (y; x). The integrations in Eq. (3) over
the eleven well-measured variables (three components of charged-lepton momentum and eight jet angles) and the four
equations of energy-momentum conservation, leave �ve integrals that must be performed to obtain the probability
that any event represents tt (or background) production for some speci�ed value of top mass Mt.
The probability for a t�t interpretation can be written as:

Pt�t =
1

12�t�t

Z
d5


X
perm.;�

jMt�tj
2 f(q1)f(q2)

jq1jjq2j
�6Wjets(Epart; Ejet);

where 
 represents a set of �ve integration variables, Mt�t is the leading-order matrix element for t�t production
[24, 26], f(q1) and f(q2) are the CTEQ4M parton distribution functions for the incident quarks [25], �6 is the phase-
space factor for the 6-object �nal state, and the sum is over all 12 permutations of the jets and all possible neutrino
solutions. Wjets(Epart; Ejet) corresponds to a function that maps parton-level energies Epart to energies measured in
the detector Ejet, and is based on MC studies. A similar expression, using a matrix element for W+ jets production
(the dominant background source) that is independent of Mt, is used to calculate the probability for a background
interpretation, Pbkg.
Studies of samples of HERWIG [23] MC events indicate that the new method is capable of providing almost a

factor of two reduction in the statistical uncertainty on the extracted Mt. These studies also reveal that there is a
systematic shift in the extracted Mt that depends on the amount of background there is in the data. To minimize
this e�ect, a selection is introduced based on the probability that an event represents background. The speci�c value
of the Pbkg cuto� is based on MC studies carried out before applying the method to data, and, for a top mass of 175
GeV/c2, retains 71% of the signal and 30% of the background. A total of 22 data events out of our 71 candidates
pass this selection.
The �nal likelihood as a function of Mt is written as:

lnL(Mt) =
NX
i=1

ln[c1Pt�t(xi;Mt) + c2Pbkg(xi)]�N

Z
A(x) [c1Pt�t(x;Mt) + c2Pbkg(x)] dx;

The integration is performed using MC methods. The best value of Mt (when L is at its maximumLmax) represents
the most likely mass of top in the �nal N -event sample, and the parameters ci re
ect the amounts of signal and
background. MC studies show that there is a downward shift of 0.5 GeV/c2 in the extracted mass, and this correction
is applied to the result. Reasonable changes in the cuto� on Pbkg do not have signi�cant impact on Mt.
Figure 4 shows the value of L(Mt)=Lmax as a function of Mt for the 22 events that pass all selection criteria, after

correction for the 0:5 GeV/c2 bias in mass. The likelihood is maximized with respect to the parameters ci at each
mass point. The Gaussian �t in the �gure yields Mt = 180:1 GeV/c2, with a statistical uncertainty of ÆMt = 3:6
GeV/c2. The systematic uncertainty, dominated by the measurement of jet energies, as discussed above, amounts
to ÆMt = 3:9 GeV/c2. When added in quadrature to the statistical uncertainty from the �t, it yields the overall
uncertainty on the new top-quark mass measurement of �5:3 GeV/c2.
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Figure 1: Feynman diagrams for t�t production in p�p collisions, with subsequent decays into an electron, neutrino, and quarks.
Diagram (a) (quark-antiquark production) is dominant, but diagram (b) (gluon fusion) contributes � 10% to the cross section.
This particular �nal state (e��u �db�b) is one of the channels used in the analysis.
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Figure 2: Relative importance of various t�t decay modes. The \lepton + jets" channel used in this analysis corresponds to the
two o�set slices of the pie-chart and amounts to 30% of all the t�t decays.
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Figure 3: Current experimental constraints on the mass of the Higgs boson. The �2 for a global �t to electroweak data using
the procedure of Ref. [6], is shown as a function of the Higgs mass. The solid line corresponds to the result for the previous
world average for the top-quark mass of 174:3�5:1 GeV/c2, with the blue band indicating the impact of theoretical uncertainty.
The dotted line shows the result for the new world-averaged Mt of 178:0 � 4:3 GeV/c2, while the dashed line corresponds to
using just the new D� average of 179:0� 5:1 GeV/c2. The yellow shaded area on the left indicates the region of Higgs masses
excluded by experiment (> 114:4 GeV/c2 at the 95% con�dence level [5]). The improved top mass measurement shifts the
most likely value of the Higgs mass above the experimentally excluded range.

Figure 4: Determination of the top-quark mass using the maximum likelihood method. The points represent the likelihood
of the �t used to extract the top mass, divided by its maximum value, as a function of the mass of the top quark (after a
correction for a �0:5 GeV/c2 mass bias, see text). The solid line shows a Gaussian �t to the points. The maximum likelihood
corresponds to a mass of 180.1 GeV/c2, which is the new D� measurement of the top mass in the lepton + jets channel. The
hatched band corresponds to the range of �1 standard deviation, and indicates the �3:6 GeV/c2 statistical uncertainty of the
�t.
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